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ABSTRACT 

This report summarizes the major technical accomplishments during 

the period from 22 September 1967 to 21 September 1968 under Contract 

No. F30602-68-C-0067 (ARPA Order No. 1010). The accomplishments can be 

grouped under three headings; namely, (1) development of a new method 

for directivity or slgnal-to-nclse optimization by spacing perturbation, 

(2) development of a new technique for the optimization of arrays with 

a large number of elements, and (3) development of a new method for 

pattern synthesis of circular arrays with directive elements. Essential 

formulations as well as analytical justifications are outlined. 
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I.  INTRODUCTION 

"Array Optimization Criteria" was the title of Contract No. 

F30602-68-C-0067 sponsored by the Advanced Research Projects Agency under 

ARPA Order No. 1010 and monitored by the Rome Air Development Center of the 

Air Force System Command. This is a technical report summarizing the 

accomplishments under the contract for the period from 22 September 1967 to 

21 September 1968. 

The accomplishments can be grouped under three major tasks. They are: 

(1) Development of a new method for directivity or signal-to-noise 

optimization by spacing perturbation,, 

(2) Development of a new technique for the optimization of large arrays. 

(3) Development of a new method for pattern synthesis of circular arrays 

with directive elements. 

The analytical techniques developed for the above ♦:asl s are outlined in the 

following sections. 



II.  SPACING PERTURBATION TECHNIQUES FOR ABRAY OPTIMIZATION1 

Until the development of the technique to be outlined in this section, 

array optimization usually starts with an array of a given configuration, 

and maximization of a performance index is achieved by properly adjusting 

the excitation amplitudes and phases in the array elements. However, for 

a given set of amplitude and phase values, uniform spacing does not yield 

the highest obtainable directivity or signal-to-noise ratio. The optimum 

element spacings can be found by a spacing perturbation technique. The 

basis of the technique lies in an optimization theorem which will be proved 

in the Appendix. The starting point can be an array of arbitrary (uniform 

or nonuniform) spacings with nonoptimum excitation amplitudes and phases. 

After an optimum set of spacings is obtained, the excitation amplitudes 

and phase shifts can be adjusted for further improvement in the desired 

performance index; then the optimum spacings can be recalculated for the 

new excitation and the cycle repeated if desired. In particular, the 

technique provides a method for improving the directivity or the output 

signal-to-noise ratio of an array with any given excitation and spacings 

by spacing perturbation until a maximum is obtained. 

Consider a linear array of 2N + n identical antenna elements sym- 

metrically located about the origin, with n = 1 when the total number of 

elements is odd, and n = 0 when the total number of elements is even and 

the center element is absent. Let 6 be the angle which the direction of o        0 

the signal makes with the array axis. The excitation in the mth element 

from the origin is I exp(j$ ), where 



* - - Uird A) cos 0 - 4>   . (1) mm       o        m 

In (1), d Is the distance of the mth element from the origin, X Is the 

signal wavelength, and $    Is the phase shift from tha cophasal operation. 

The array  factor will then be 

N 
I 

m=l 

EOIO =  -^ + y I cos 0)J -  4) , (2) £.        / .    m     mm 

where 

\\)  = (2TTd/X)(cos 6 - cos 6 ) (3) o 

D, = dm/d (4) 
m   m 

and d, a normalizing distance, may be any choice of convenience. For 

example. If one starts with a uniformly spaced array, It would be natural 

to make d the spacing between neighboring elements. We define the output 

slgnal-to-nolse ratio as the ratio of the power received per unit solid 

angle In the direction of the signal to the average noise power received 

per unit solid angle. Thus, 

G   - |E(0) 

where 

SNR      2v TT 

^ I    dcj) ||E(I|0|
2
 w(e, (j>) sin e de 

w(e, (j)) = g(e, *) T(e,(j)) (6) 

g(e, <|)) = element power pattern function (7) 

T(e, (J)) = spatial distribution function of 
noise power (8) 



It is convenient to normalize g(e, $)  in (7) with respect to its value 

in the direction of the signal; i.e., g(e , cfi ) = 1.  The composite 

function w(e, (|)) in (6) can be viewed as a weighting function on the 

array power pattern |E(^)|2. We note that (5) becomes the expression 

for directivity, G , when T(e, cf)) = 1; hence it serves as the starting 

point for the optimization of both S   and G . Clearly, both are 

affected by the normalized element positions {D } and the excitations 

(I , $ }. m  m 

Let the perturbed normalized element positions be {D }. 

D = D0 + x   , W 
m   m   m 

where D    and x    represent,  respectively,  the unperturbed position and 

the spacing perturbation for the mth element and x    << 1,     Substitution 

of  (9)  in  (2) yields approximately 

N 

EOIO = E0W  -  V   K[1J sin  (D% - <L)]   , (10) / .    mm mm 
m=l 

where E (^)  is the unperturbed array factor with D    substituted for 

D    in  (2).    Using  (10), we can write  (5)  in the following form: 

a ^«»i2    . (11) 
SNR     A - 2x'  F + x'  Cx 

where 
2TT TT 

n        ' (12) 

Ö 

A = ■—     /    dij)    /    |E0(^)|2 w(e,  (j)) sin 0 de 

x'  = I.X- ,   X2»    ...    ^»j»    • • • »   ^ra' v-L-J/ 

...--lu-^.fi.^itvrT^v-.^'iii^iu/iau.^an.f.r. 



Is the transpose of the column matrix of spacing perturbations x; ß is a 

column matrix of typical element 

/TT      IT 

d* I Im^E
0(^) w(e,((.) sin (D°^ - (t)m) sin 9 de  ;      (14) 

and C»  [c,]  IsanNxN square matrix with 
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1 c 'mk h   j     d*l ImV2w(e»<!,)  sin  ^ " U8111^ " *k)sln 0 de   (15) 

It can readily be shown that C Is symmetric and positive definite. 

Use can then be made of the theorem proved in the Appendix, which enables 

vn to  conclude: 

a) Max. G™ =  ' WL  ; (16) 
-SNR  A _ g. c-i ß 

(x = xM) 

b) ^ = C"1 3 (17) 

Equations (16) and (17) give the results of a first-order perturbation. 

After the components of JL, have been determined from (17), they can be 

substituted back in (9). One can then use (D + xM) as the new normalized 

element-position column matrix and perform a second-order perturbation to 

obtain further Improvement in the performance index. This process can be 

repeated until it becomes evident that further Iteration yields a negligible 

Improvement, For the many cases which have been computed, it is found that 

convergence toward optimum values usually takes place very quickly; seldom 

are more than two iterations required. 



The spacing perturbation technique outlined above yields the required 

element positions In order to maximize G-.— for a given set of excitation 

parameters. Even If one starts with a uniformly spaced array, the element 

spaclngs will no longer be uniform after the perturbation. Now this per- 

turbed, nonunlformly spaced array can be further optimized by proper ampli- 

fications and phase shifts following the array elements. With this In mind, 

we let yo = Io, yn = In cos ^  and yN+n = In sin ^ (n=l,2,...,N). Further- 

more, let ho(ij;) = TI/2, hni\\i)  = cos D^, and hN+n(^) = sin D ^(n=l,2 N). 

Equation (5) can then be converted to the following form: 

y' ii h' y 
GSNR=  -.V   ' (18> 7 B y 

where 

y* = [y0» y1> 72 fz^ (19) 

h^=[ho(0), h1(0), h2(0) 
h2N(0)] (20) 

and B = [bi.] Is a (2N + n) x (2N + n) square matrix with 

27r TT ' 

bij = fc J   d$ jh^) h^) wO,*) sin e d e . (21) 
0 0 

GSNR in (^  is exPresse^ as a ratlo of two quadratic forms. Since 1 

2 3 is symmetric and positive definite, we know * that G   can be maximized by 
SNR 

choosing the column matrix y = y : 

yM = B"
1
 ho (22) 

■,S1 ttCLrHW-Tl»- *' 



and that 

^ GSNR = K  rl K ■ (23) 
(y = yM) 

Equation (22) completely specifies the amplifications and phase shifts 

required to obtain the maximum possible GSNR, as given in (23), for the 

perturbed array. If the performance index of interest is directivity 

Go» yM wil1 yield the required excitation amplitudes and phases to maxi- 

mize Go. We have now reached a second submaximum, which may possibly be 

further improved by holding the excitation unchanged and again perturbing 

the spacings. The cycle may be repeated until further adjustments are no 

longer worthwhile. 

It is to be emphasized that this alternate spacing perturbation 

and excitation adjustment procedure of seeking a maximum performance index 

can be applied to an array which initially has an arbitrary, nonuniform 

spacing and an arbitrary distribution of excitation amplitudes and phases. 

Optimization using the above technique has been carried out for both broad- 

side and endfire arrays for typical spatial distributions of noise or clutter 

power.  For example, with a cosine-square over a pedestal type of clutter 

power distribution, the maximum signal-to-noise ratio for a 7-element broad- 

side uniform array is 16.0 and that for an optimized array Is increased to 

181.9. Even more imrresslve improvement is obtained for a 7-element endfire 

array, in which case the signal-to-noise ratio is Increased from 15.8 to 891„4 

by optimization. Moreover, the improvement does not result in the objectionable 

features (very small element spacings or large excitation amplitudes of alter- 

nating signs) of a supergain array. 



III. METHODS FOR OPTIMIZATION OF LARGE ARRAYS 

Methods for the optimization of either the directivity or the signal- 

to-noise ratio of an N-element antenna array requires the inversion of an 

N x N square matrix. This requirement raises questions on the achievable 

accuracy and the amount of computer time necessary for handling arrays with 

a large number of elements. For large arrays, it would be extremely desira- 

ble if a technique could be found so that the computational difficulties 

would be reduced in the use of the optimization method based on a considera- 

tion of the ratio of t;ro Hermitian forms. Such a technique has been found 

and will be outlined ia  this section. 

The basis of this technique lies in a transformation which transforms 

the excitations in the elements of an array into finite summations of an 

exponential series with complex coefficients. Let the normalized array 

fact"*, wj. an N-element array be written as 

N 

En(*) = N Z ^ exp[:i (N " 2m + !) M   > (24) 
m=l 

where ^ has been defined in (3), and N is very large. We set 

N 

Im " Z!   ap exp["j   (P~1)(N - 2m + 1)  TT/N], (25) 
P-l 

It is easy    to verify that the substitution of  (25)  in  (24) yields 

N 

En^"lEapfpW (26) 
P-l 

8 

n^-^uvar-war 



sin § [i|» - (p-1) 2Tr/N] 
f (I') "  T  * (27) 
p     sin j [i|» - (p-1) 2Tr/N] 

Now the expression in (27) has the following property: 

where 

VV*= %• * (28) 

V» =|- (P* - !> (29) 

and 6  , is the Kronecker delta. Combination of (27), (28) and (29) gives 

a very simple result: 

W = aP • (30) 

which says that the sampled value of the normalized array factor in the 

direction specified by ^ is numerically equal to the transformed coefficient 

a in (25).  Since a decreases rapidly as p increases, only very few terms 

need be used for the summation in (26).  It is noted that the inverse rela- 

tion for (25) is 

N 

ap = | ^T Im exp[j (p-l)(N - 2m + 1) TT/N] . (31) 

m=l 

For a properly chosen positive integer P « N, we have |a /a1| « 1 

for P <. p £ N-P, and 
2P 

EnWä|E VvW   ' (32) 

where 

bp = ap , gp(^) = fp(i|0 for 1 1 p 1 P (33) 

,:r!iHir--;uui'~'W-*"- 



and 

bp = V2P+p' 8p(^ " fN-2P+p(^ for P + 1 < p < 2P .        (34) 

The element excitations given In (25) becomes 

P 

Im = ^ b exp[-j (p-l)(N - 2m + 1) ir/N] 

P-1 

2P 

+ V  b exp[-j(N - 2P + p - 1)(N - 2m + 1) TT/N],      (35) 

p=P+l 

This approximate expression for I can then be used In the formulation for the 

array performance Index of Interest, and the computation labor for Its maximi- 

zation Is greatly reduced. 

Preliminary Investigation has Indicated that 8 values of a give a 

very good approximation of the array pattern E (^) for a 50-element linear 

array. This means that the tedious and inaccurate inversion of a 50 x 50 

matrix can be replaced by the inversion of an 8 x 8 matrix through the use of 

transformation (25). It remains to obtain more numerical data for arrays 

of different geometrical configurations and for different scan angles. 

Study will also be made on the effect of the approximation on meaningful 

constraints such as main-beam radiation efficiency. 

10 



IV. PATTERN SYNTHESIS FOR CIRCULAR ARRAYS WITH DIRECTIVE ELEMENTS 

Circular arrays consisting of radiating sources uniformly disposed 

around a circular ring find applications in situations where steerability 

and pattern invariance are of importance. Several authors   have dealt 

with pattern synthesis techniques for circular arrays. Most published 

articles pay special attention to patterns with equal sidelobes and none 

appears to have considered nonisotropic radiating elements. Unlike a 

linear array, a straightforward multiplication of the element pattern 

function and the array factor does not correctly give the radiation pattern 

of a circular array.  This causes complication in pattern analysis and dif- 

ficulty in pattern synthesis.  It should be pointed out that the problem 

of pattern synthesis is different from that of gain optimization, the latter 

problem having been solved previously for circular arrays with directive 

elements. 

o 
Recently Mott and Dudgeon proposed ^ method for synthesizing the 

pattern of a circular array with Isotropie sources. It involves a prelimi- 

nary integration, leading to a matrix which can be reduced and inverted on 

a digital computer with less labor. However, when the number of array 

elements is large, error accumulation and storage problems in the reduction 

and inversion of a large matrix would again become serious.  In this section 

we present a refined method which does not require a matrix inversion at all 

and hence is particularly useful when large circular arrays with many elements 

are to be designed. Moreover, the present method is applicable to cases where 

the array elements themselves possess a directive pattern. 

11 



Consider a circular array of radius a with H+ 1 directive elements 

arranged uniformly around its periphery. If g(^)  denotes the element pattern, 

the far-field pattern of the array in the plane of the circle is 

M 

E(*) = Y* Amg(* - ir> exp[Jea co8 (* - ir>J » 
m=0 

(36) 

where 3 = 2IT/X and Am is the complex excitation in the mth element. In 

(36), the zeroth element is assumed to lie on the reference axis from which 

the angle <j) is measured. Let E (cj)) be the radiation pattern to be synthe- 

sized. Since Eo((J)) is periodic in $, it can be expanded in a Fourier-series 

form: 

N 

V*) = 2^  Bn exP^n*)  » (37) 

where 

n=-N 

2Tr 

Bn= W   I     En^  exp(-jn(|))d(|> . (38) 3n=IF f Eo, 

Equation (27) is a truncated Fourier series of 2N + 1 terms; it represents 

a least-mean-square approximation. This approximation is necessary and 

reasonable because one can not use an infinite number of elements in a 

practical design and because the avoidance of supergain phenomenon con- 

strains the minimum allowable element spacing. The synthesis problem is 

then the determination of the excitation coefficients {A } such that E((h) 
m v ¥ / 

in (36) equals Eo((J>) in (37). We write 

12 
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M N 

Z V<» - M> «P"8« "8 <♦ " M)l - f BeKpCjn*) .    (39) 

-0 n.-N 

for 0 £ ^ £ 2TT . 

For a unique solution of (39), we must have M + 1 = 2N + 1, or 

M - 2N.  Integrating both sides of (39) in the manner of (38), we obtain 

M 

Z. Am an exPH2mnTr/(M + 1)] = Bn  , (40) 

m=0 

where 

n      2i\ J g((j)) exp[j(ßa cos $ - n<b)]d<t>  , (41) 
Ö 

n = 0, + 1, + 2,   ... + N. 

With the reasonable assumption that the element pattern g((f)) is an even 

function of ((>, we can write 

K 

8(4») := X. ^ cos k(*» • (42) 
k=0 

Substitution of (42) in (41) yields 

K 

an = I E ^^^ Jn-k^a> + Jn+k Jn+k(^)] »      (43) 
k=0 

n = 0, + 1, + 2, ..., + N . 

Let {Ck} be such that an ^ 0 for all n.  Then, by using the following 

identity, 

13 



N 

exptjada1 - m)mr/(2N + 1)] - (2N + 1)6  , , (44) 

where 6 ,  Is the Kronecker delta (which equals zero when m r m7 and equals 

unity when m = m1), we obtain, from (40), 

N      B 

Am = 2NVI  71    ^   exp[j  2mn7r/(2N + Dl     » (45) 
n^-N 

m = 0,  1,  2,   .., M(or 2N). 

We note that (45) is an explicit expression for finding the excitation 

coefficients, {A }, in the M + 1 or 2N + 1 elements of the circular array. 

The {A } so determined will yield a radiation pattern which approximates 

the desired E ($)  in the least-mean-square sense. The usefulness of (45) 

stems not only from its applicability to the synthesis of circular arrays 

with directive elements, but also from the fact that no matrix reduction or 

inversion is required. This latter feature is a most desirable one when 

large circular arrays with many elements are to be synthesized. 

14 



V. APPENDIX 

In this section the theorem which forms the basis of the spacing 

perturbation technique described in Section II is stated and proved. 

Theorem. If a quantity P can be expressed in terms of an N x 1 real column 

vector x as 

P = A - 2x,ß + x1 C x , (46) 

where A is a constant, 3 is another N x 1 real column vector, x' is the 

transpose of x, and C is an N x N positive definite, symmetric, square 

matrix, then 

a) min.   P = A - (3' c"1 3 ,   and (47) 

b> Vi = C"1 3. (48) 

Proof: If C is positive definite, it is known that10 

(I'C-1 BHx' C x) ^ (x* 3)2 (49) 

or 

x» C x^ ^y—    (x' 3)2 , (50) 
3' C"x 3 

where the equality sign applies when 

x = ^ = C"1 3 . (51) 

Let c = 3' C  3 > 0, and b = x' 3. We have, from (46) and (SO), 

P = A - 2b + x' C x 

But, 

> A - 2b + )r- (52) 

A-2b+ — =A-c+- (c-b)2 
c c    ' 

1 A " c. (53) 

15 



Combining (52) and (53), we obtain 

P ^ A - ßf C"1 ß  , (54) 

where the equality sign holds with (51); hence the theorem is proved. 

16 
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to- noise optimization by spacing perturbation, (2) development of a new technique 
for thfi  optimization of arrays with a large number of elements, and (3) development 
of a new method for pattern synthesis of circular arrays with directive elements. 
Essential formulations as well as analytical justifications are outlined. 
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